Progression of Calculations through Reigate St Mary's

REIGATE ST MARY'S
PREPARATORY AND CHOIR SCHOOL

CALCULATIONS POLICY

UPDATED	REVIEW DATE
II September 2017	10 September 2019
Name of staff member responsible for document	
Annette Wright	

Rationale

At St Mary's, we believe a clear progression in calculation will support the learning and teaching of Maths throughout the school, allow clarity and provide a secure foundation upon which to build and develop mathematical skills. The aim is to have a steady progression of understanding in Maths as your child moves through the school. Different methods are taught, but they have been chosen to build on one another, according to the level your child is working at, rather than which year group they are in.

This policy contains the key pencil and paper procedures that will be taught within St Mary's and should be read alongside the Maths Policy. Although the focus of the policy is on pencil and paper procedures it is important to recognise that the ability to calculate mentally lies at the heart of the Maths framework. In every written method there is an element of mental processing. Sharing written methods with the teacher encourages children to think about the mental strategies that underpin them and develop new ideas. Therefore, written recording both helps children to extend and clarify their thinking. Children should be encouraged to see mathematics as both a written and a spoken language.

Teachers should support and guide children through the following stages:

1. Develop the use of pictures and use of words and symbols to represent numerical activities.
2. Use standard symbols and conventions.
3. Use of jottings to aid a mental strategy.
4. Use of pencil and paper procedures.
5. It is important that children do not abandon jottings and mental methods once other pencil and paper procedures are introduced. Children will always be encouraged to look at a calculation/problem and then decide on the best method.

Progression in calculation should include:

A range of mental strategies to be used as a first resort, even once written methods have been introduced and embedded.

1. An ability to understand and use the relationships between the four operations of number.
2. An ability to explain, describe and record their methods.
3. An ability to estimate and check whether the answer is correct.
4. An ability to solve a wide range of problems involving calculation in a wide variety of contexts.
5. An ability to choose and use the most appropriate method of calculation; mental, jottings, written or using a calculator.
6. An ability to take the initiative to return to an earlier method that children are more confident with.

This policy is shows the progression in each operation (addition, subtraction, multiplication and division.) All methods should be taught with understanding rather than by rote and put into real life contexts. Differentiated outcomes throughout the progression will be the size of the numbers the children are using.

S E	Addition Addition Vocabulary \qquad	Subtraction	Multiplication Multiplication Vocabulary X repeated addition	Division Division Vocabulary remainder group Share \qquad factor quotient equal groups of divide

	Addition	Subtraction	Multiplication	Division
1	Children are encouraged to develop a mental picture of the number system in their head for calculation. They develop ways of recording calculations using pictures, Numicon etc They handle objects for early addition work. Ala: Largest Number 1st	Before children can move onto the methods for subtraction they need to be able to count reliably including one to one. The children will be supported with these concepts through singing Nursery Rhymes and develop ways of recording calculations using pictures or using apparatus, such as Numicon correspondence.	Children will experience equal groups of objects. They will count in $2 s$ and $10 s$ and begin to count in 5 s . They will work on practical problem solving activities involving equal sets or groups. Numicon will be used to help the children to visualise the grouping of numbers and to support counting on as repeated addition. How many legs will 3 teddies have?	Children will understand equal groups and share items out in play and problem solving. They will count in $2 s$ and 10 s and later in 5 s . They will experience the language of sharing early on; sharing of toys, fruit etc, and will have experienced the idea of groups - by working in a practical way practical way group with an adult or sorting toys or objects into groups of the same colour for instance. They will draw pictures in groups or sets. Division will be explored using grouping (with numicon, then number line)

Addition

Addition	Subtraction	Multiplication	Division
Cla: Number Order The Nambors must bo sadd cmoe and dhage in the ocmvertional ontop. Children need to count on from any number, combining two groups (slide c6) C6: Counting On Children will recognise that addition can be done in any order. Children will begin to know addition facts to ten. Children will be able to count on in ones on a numbered line.	S2: What's the Difference? "How many more is 7 than 5 ? What is the difference?"		Children will halve numbers and work out simple fractions of numbers

	Addition	Subtraction	Multiplication	Division
	Children will be able to use more efficient jumps, starting with the larger number and counting on in ones. $4+6$ $5+5$			
2	Children are encouraged to develop a mental picture of the number system in their head for calculation. They develop ways of recording calculations using pictures, numicon etc (slide A1a) Pupils to recognize the effect of adding and subtracting zero Children then begin to use numbered lines to support their own calculations using a numbered line to count on in Children are able to count on using a marked unlabelled number line, then	Children are encouraged to develop a mental picture of the number system in their head for calculation. They develop ways of recording calculations using pictures, numicon etc The numberline should be used to show that 6-3 means the difference between 3 and 6 and how many jumps they are apart.	Children will experience equal groups of objects They will count in $2 s$ and $10 s$ and begin to count in 5 s . They will work on practical problem solving activities involving equal sets or groups. Numicon will be used to help the children to visualise the grouping of numbers and to support counting on as repeated addition	The children will be able to divide objects into equal groups They use counters, bears, Numicon or other objects to group with to solve problems. They will begin to recognise how times- table facts can help them and see the inverse relationship between division and multiplication. Groupings using a number line

Addition

Children will begin to use empty number lines themselves starting with the larger number and counting on

First counting on in tens and ones
Then helping children to become more efficient by adding the units in one jump
(by using known facts e.g. $3+4=7$)
Followed by adding the tens in one jump and the units in one jump.

Bridging through ten can help the children to become more efficient.

Children will use partitioning to see how numbers are broken down into their different values. Children will be introduced to the expanded subtraction.

(S1O: Expanded Subtraction)

87-23 = 64
807

(S1O:

Expanded Subtroction)
75-37 = 38

${ }^{60} 70 \quad 15$ | $30 \quad 7$ |
| :--- |
| $30 \quad 8$ |

4 times 9 is 9+9+9+9 or 9 lots of 4 or 4×9

$$
9 \times 4=36
$$

Children will be comfortable with the concept of multiplying and dividing by powers of ten

Children will develop their

 understanding of division and use jottings to support calculationSharing equally
6 sweets shared between 2 people, how many do they each get?

Repeated addition using a number line or beads

Grouping on a number line

$$
13 \div 3=4 r 1
$$

012345678910111213

Using symbols to stand for unknown numbers to complete equations using inverse operations

Short division for larger 2 digit numbers Bus shelter method The number being divided (the dividend) in the middle (under the shelter). 2.Start by looking at the most significant number and work out how many
times it can go into the number.

Children will continue to use empty number lines with increasingly large numbers, including compensation where appropriate

Count on from the largest number irrespective of the order of the calculation

Children will use partitioning to see how numbers are broken down into their different values. Children will be introduced to the expanded column method for larger numbers before moving quickly onto the formal column method as they will then have developed an understanding of the process

A6: Expanded Column

Adding the least significant digits first in preparation for 'carrying.' Formally moving to the column method

Children will continue to use empty number lines with increasingly large numbers

They will use the expanded column method (known as decomposition) to partition the number and subtract each place value separately always starting with the least significant digits (e.g. the units). It is very important they understand the importance of keeping the digits lined up.
$2754-1562=1192$ $2000+\frac{600}{7}$
$-\frac{1000+500+60+2}{1000 \square 100+90+2}$
First they will work with numbers that have no exchanging (e.g. the units or tens of the number being subtracted is smaller than the starting number).

Next they will learn how to exchange from the tens to the units. They need to recognise when the starting number's units have less than the number being subtracted. When this is the case they need to 'exchange' 10 from the tens into the units, in order to be able to subtract the numbers. It

	of addition(Slide A7) (A7: Column Addition) Additional:a T U 57	is important the children understand the tens have to come over to the units as a whole 10. The Base 10 (Dienes) apparatus helps the children to visualise what happens and how the exchange takes place. We also use place value counters. Once the children understand this process of exchanging, they will often do it in one go to save time.		
5	Move from expanded addition to the compact column method, adding units first, and carrying numbers above the calculation. Also include money and measures contexts.	Children will be able to subtract using the Compact Decomposition Method and understand the importance of lining up each digit.	Children will continue to use arrays where appropriate using the grid method of multiplication Grid method as stage $4 \mathrm{HTU} \times \mathrm{U}$	Continue to develop short division/ bus stop method This method relies heavily on times tables knowledge - 2 digit numbers divided by single digit Then 3 digits divided by a single digit

			M7: Column Multiplication	
6	Add numbers with more than 4 digits including money, measures and decimals with different numbers of decimal places. The decimal point should be aligned in the same way as the other place value columns, and must be in the same column in the answer.	The children will be using the Compact Decomposition Subtraction method to solve subtractions of decimal numbers and more complex numbers. S1ld: Column Subtraction $\begin{array}{r} 40 \\ 50 \% \\ -1776 \\ \hline 3266 \\ \hline \end{array}$	Column multiplication linked to grid multiplication	$138 \div 6 \frac{023}{6 \longdiv { 1 3 8 }}$ Short division involving remainders (D10: Short Division) Additional:a $\begin{aligned} & 65+4=16 r 1 \\ & \frac{16 r 1}{4}{ }^{6^{2} 5} \end{aligned}$ Short division with remainders: Now that pupils are introduced to examples that give rise to remainder answers,

